Theory of Linear Equations Applied to Program Transformation
نویسندگان
چکیده
In this paper is presented a technique for transforming a class of recursive equations called linear equations into iterative equations. Linear equations are characterized by involving at the most one recursive call for any invocation. In contrast to the conventional techniques, the scheme of program transformation presented here involves finding the solution of the given linear equation and transforming this solution. The solutions of linear equations can always be expressed using a construct called abstract sequence. Two classes of abstract sequence programs are identified: right-associative and left-associative sequence programs. The former are obtained by solving linear equations and the latter correspond to iterative programs. The task of transforming linear recursive programs into iterative programs is thus reduced to the task of transforming right-associative sequence programs into left associative ones. Various transformation rules are developed based on an algebra of functional programs.
منابع مشابه
Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملDifferential transformation method for solving a neutral functional-differential equation with proportional delays
In this article differential transformation method (DTMs) has been used to solve neutral functional-differential equations with proportional delays. The method can simply be applied to many linear and nonlinear problems and is capable of reducing the size of computational work while still providing the series solution with fast convergence rate. Exact solutions can also be obtained from the kno...
متن کاملNonlinear Dynamic Response of Functionally Graded Porous Plates on Elastic Foundation Subjected to Thermal and Mechanical Loads
In this paper, the first-order shear deformation theory is used to derive theoretical formulations illustrating the nonlinear dynamic response of functionally graded porous plates under thermal and mechanical loadings supported by Pasternak’s model of the elastic foundation. Two types of porosity including evenly distributed porosities (Porosity-I) and unevenly distributed porosities (Porosity-...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملInvestigation of Strain Gradient Theory for the Analysis of Free Linear Vibration of Nano Truncated Conical Shell
In this paper the nano conical shell model is developed based on modified strain gradient theory. The governing equations of the nano truncated conical shell are derived using the FSDT, and the size parameters through modified strain gradient theory have been taken into account. Hamilton’s principle is used to obtain the governing equations, and the shell’s equations of motion are derived with ...
متن کامل